翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Pseudo-real representation : ウィキペディア英語版
Quaternionic representation
In mathematical field of representation theory, a quaternionic representation is a representation on a complex vector space ''V'' with an invariant quaternionic structure, i.e., an antilinear equivariant map
:j\colon V\to V\,
which satisfies
:j^2=-1.\,
Together with the imaginary unit ''i'' and the antilinear map ''k'' := ''ij'', ''j'' equips ''V'' with the structure of a quaternionic vector space (i.e., ''V'' becomes a module over the division algebra of quaternions). From this point of view, quaternionic representation of a group ''G'' is a group homomorphism ''φ'': ''G'' → GL(''V'', H), the group of invertible quaternion-linear transformations of ''V''. In particular, a quaternionic matrix representation of ''g'' assigns a square matrix of quaternions ''ρ''(g) to each element ''g'' of ''G'' such that ''ρ''(e) is the identity matrix and
:\rho(gh)=\rho(g)\rho(h)\textg, h \in G.\,
Quaternionic representations of associative and Lie algebras can be defined in a similar way.
==Properties and related concepts==

If ''V'' is a unitary representation and the quaternionic structure ''j'' is a unitary operator, then ''V'' admits an invariant complex symplectic form ''ω'', and hence is a symplectic representation. This always holds if ''V'' is a representation of a compact group (e.g. a finite group) and in this case quaternionic representations are also known as symplectic representations. Such representations, amongst irreducible representations, can be picked out by the Frobenius-Schur indicator.
Quaternionic representations are similar to real representations in that they are isomorphic to their complex conjugate representation. Here a real representation is taken to be a complex representation with an invariant real structure, i.e., an antilinear equivariant map
:j\colon V\to V\,
which satisfies
:j^2=+1.\,
A representation which is isomorphic to its complex conjugate, but which is not a real representation, is sometimes called a pseudoreal representation.
Real and pseudoreal representations of a group ''G'' can be understood by viewing them as representations of the real group algebra R(). Such a representation will be a direct sum of central simple R-algebras, which, by the Artin-Wedderburn theorem, must be matrix algebras over the real numbers or the quaternions. Thus a real or pseudoreal representation is a direct sum of irreducible real representations and irreducible quaternionic representations. It is real if no quaternionic representations occur in the decomposition.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Quaternionic representation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.